

    
      
          
            
  
KOSMOS

This is a fully python-based spectral reduction toolkit, designed
around the “KOSMOS” spectrograph at Apache Point Observatory. These tools
should work will almost any longslit spectrograph.



Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   k
   


   
     		 	

     		
       k	

     
       	[image: -]
       	
       kosmos	
       

     
       	
       	   
       kosmos.apextract	
       

     
       	
       	   
       kosmos.flatfield	
       

     
       	
       	   
       kosmos.fluxcal	
       

     
       	
       	   
       kosmos.identify	
       

     
       	
       	   
       kosmos.imtools	
       

     
       	
       	   
       kosmos.version	
       

     
       	
       	   
       kosmos.wrappers	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | F
 | I
 | K
 | L
 | M
 | O
 | P
 | S
 | T
 


A


  	
      	air_to_vac() (in module kosmos.identify)


  

  	
      	airmass_cor() (in module kosmos.fluxcal)


      	apply_sensfunc() (in module kosmos.fluxcal)


  





B


  	
      	biascombine() (in module kosmos.imtools)


  

  	
      	BoxcarExtract() (in module kosmos.apextract)


  





F


  	
      	find_illum() (in module kosmos.flatfield)


      	find_peaks() (in module kosmos.identify)


  

  	
      	fit_wavelength() (in module kosmos.identify)


      	flat_response() (in module kosmos.flatfield)


      	flatcombine() (in module kosmos.flatfield)


  





I


  	
      	identify_dtw() (in module kosmos.identify)


  

  	
      	identify_nearest() (in module kosmos.identify)


      	identify_widget() (in module kosmos.identify)


  





K


  	
      	
    kosmos

      
        	module


      


      	
    kosmos.apextract

      
        	module


      


      	
    kosmos.flatfield

      
        	module


      


      	
    kosmos.fluxcal

      
        	module


      


  

  	
      	
    kosmos.identify

      
        	module


      


      	
    kosmos.imtools

      
        	module


      


      	
    kosmos.version

      
        	module


      


      	
    kosmos.wrappers

      
        	module


      


  





L


  	
      	loadlinelist() (in module kosmos.identify)


  





M


  	
      	mag2flux() (in module kosmos.fluxcal)


      	
    module

      
        	kosmos


        	kosmos.apextract


        	kosmos.flatfield


        	kosmos.fluxcal


        	kosmos.identify


        	kosmos.imtools


        	kosmos.version


        	kosmos.wrappers


      


  





O


  	
      	obs_extinction() (in module kosmos.fluxcal)


  

  	
      	onedstd() (in module kosmos.fluxcal)


  





P


  	
      	proc() (in module kosmos.imtools)


  





S


  	
      	script_reduce() (in module kosmos.wrappers)


  

  	
      	standard_sensfunc() (in module kosmos.fluxcal)


  





T


  	
      	trace() (in module kosmos.apextract)


  







            

          

      

      

    

  

    
      
          
            
  
kosmos package


Submodules



kosmos.apextract module


	
kosmos.apextract.BoxcarExtract(img, trace_line, apwidth=8, skysep=3, skywidth=7, skydeg=0, Saxis=0, Waxis=1, display=False, ax=None)

	This is nearly identical to specreduce.extract.BoxcarExtract,
because that was based on the same PyDIS source code as this.

1. Extract the spectrum using the trace. Simply add up all the flux
around the aperture within a specified +/- width.

Note: implicitly assumes wavelength axis is perpendicular to
the trace.


	Fits a polynomial to the sky at each column


	Computes the uncertainty in each pixel





	Parameters

	
	img (CCDData object) – This is the image to run extract over


	trace_line (1-d array) – The spatial positions (Y axis) corresponding to the center of the
trace for every wavelength (X axis), as returned from trace


	apwidth (int, optional) – The width along the Y axis on either side of the trace to extract.
Note: a fixed width is used along the whole trace.
(default is 8 pixels, must be at least 1 pixel)


	skysep (int, optional) – The separation in pixels from the aperture to the sky window.
(Default is 3, must be at least 1 pixel)


	skywidth (int, optional) – The width in pixels of the sky windows on either side of the
aperture. (Default is 7, must be at least 1 pixel)


	skydeg (int, optional) – The polynomial order to fit between the sky windows.
(Default is 0)


	Saxis (int, optional) – Set which axis is the spatial dimension. For DIS, Saxis=0
(corresponds to NAXIS2 in header). For KOSMOS, Saxis=1.
(Default is 0)


	Waxis (int, optional) – Set which axis is the wavelength dimension. For DIS, Waxis=1
(corresponds to NAXIS1 in the header). For KOSMOS, Waxis=0.
(Default is 1)
NOTE: if Saxis is changed, Waxis will be updated, and visa versa.


	ax (matplotlib axes or subplot object, optional) – axes or subplot to be plotted onto. If not specified one will be
created. (Default is None)






	Returns

	
	spec (Spectrum1D object) – The extracted spectrum


	skyspec (Spectrum1D object) – The sky spectrum used in the extraction process















	
kosmos.apextract.trace(img, nbins=20, guess=None, window=None, Saxis=0, Waxis=1, display=False, ax=None)

	Trace the spectrum aperture in an image

Assumes wavelength axis is along the X, spatial axis along the Y.
Chops image up in bins along the wavelength direction, fits a Gaussian
within each bin to determine the spatial center of the trace. Finally,
draws a cubic spline through the bins to up-sample trace along every X pixel.


	Parameters

	
	img (2d numpy array, or CCDData object) – This is the image to run trace over


	nbins (int, optional) – number of bins in wavelength (X) direction to chop image into. Use
fewer bins if trace is having difficulty, such as with faint
targets (default = 20, but minimum must be 4)


	guess (int, optional) – A guess at where the desired trace is in the spatial direction (Y). If set,
overrides the normal max peak finder. Good for tracing a fainter source if
multiple traces are present.


	window (int, optional) – If set, only fit the trace within a given region around the guess position.
Useful for tracing faint sources if multiple traces are present, but
potentially bad if the trace is substantially bent or warped.


	display (bool, optional) – If set to true display the trace over-plotted on the image


	Saxis (int, optional) – Set which axis is the spatial dimension. For DIS, Saxis=0
(corresponds to NAXIS2 in header). For KOSMOS, Saxis=1.
(Default is 0)


	Waxis (int, optional) – Set which axis is the wavelength dimension. For DIS, Waxis=1
(corresponds to NAXIS1 in the header). For KOSMOS, Waxis=0.
(Default is 1)
NOTE: if Saxis is changed, Waxis will be updated, and visa versa.


	ax (matplotlib axes or subplot object, optional) – axes or subplot to be plotted onto. If not specified one will be
created. (Default is None)






	Returns

	my – The spatial (Y) positions of the trace, interpolated over the
entire wavelength (X) axis



	Return type

	array











kosmos.flatfield module


	
kosmos.flatfield.find_illum(flat, threshold=0.9, Saxis=0, Waxis=1)

	Use threshold to define the illuminated portion of the image.


	Parameters

	
	flat (CCDData object) – An image, typically the median-combined flat


	threshold (float) – the fraction to clip to determine the illuminated portion (between 0 and 1)


	Saxis (int, optional) – Set which axis is the spatial dimension. For DIS, Saxis=0
(corresponds to NAXIS2 in header). For KOSMOS, Saxis=1.
(Default is 0)


	Waxis (int, optional) – Set which axis is the wavelength dimension. For DIS, Waxis=1
(corresponds to NAXIS1 in the header). For KOSMOS, Waxis=0.
(Default is 1)
NOTE: if Saxis is changed, Waxis will be updated, and visa versa.






	Returns

	ilum – the indicies along the spatial dimension that are illuminated



	Return type

	numpy array










	
kosmos.flatfield.flat_response(medflat, smooth=False, npix=11, display=False, Saxis=0, Waxis=1, ax=None)

	Divide out the spatially-averaged spectrum response from the flat image.
This is to remove the spectral response of the flatfield (e.g. Quartz) lamp.

Input flat is first averaged along the spatial dimension to make a 1-D flat.
This is optionally smoothed, and then the 1-D flat is divided out of each row
of the image.

Note: implicitly assumes spatial and spectral axes are orthogonal, i.e. does not
trace lines of constant wavelength for normalization.


	Parameters

	
	medflat (CCDData object) – An image, typically the median-combined flat


	smooth (bool (default=False)) – Should the 1-D, mean-combined flat be smoothed before dividing out?


	npix (int (default=11)) – if smooth=True, how big of a boxcar smooth kernel should be used (in pixels)?


	display (bool (default=False))


	Saxis (int, optional) – Set which axis is the spatial dimension. For DIS, Saxis=0
(corresponds to NAXIS2 in header). For KOSMOS, Saxis=1.
(Default is 0)


	Waxis (int, optional) – Set which axis is the wavelength dimension. For DIS, Waxis=1
(corresponds to NAXIS1 in the header). For KOSMOS, Waxis=0.
(Default is 1)
NOTE: if Saxis is changed, Waxis will be updated, and visa versa.


	ax (matplotlib axes or subplot object, optional) – axes or subplot to be plotted onto. If not specified one will be
created. (Default is None)






	Returns

	flat



	Return type

	CCDData object










	
kosmos.flatfield.flatcombine(ffiles, bias=None, trim=True, normframe=True, illumcor=True, threshold=0.9, responsecor=True, smooth=False, npix=11, Saxis=0, Waxis=1, EXPTIME='EXPTIME', DATASEC='DATASEC')

	A general-purpose wrapper function to create a science-ready
flatfield image.


	Parameters

	
	ffiles (list of paths to the flat frame .fits files)


	bias (CCDData object, optional (default=None)) – median bias frame generated using e.g. biascombine to subtract
from each flat image


	trim (bool (default=True)) – Trim the “bias section” out of each flat frame. Uses fits header
field defined by DATASEC keyword


	normframe (bool (default=True)) – if set normalize each bias frame by its median value before combining


	illumcor (bool (default=True)) – use the median-combined flat to determine the illuminated portion
of the CCD. Runs find_illum.


	threshold (float (optional, default=0.9)) – Passed to find_illum.
the fraction to clip to determine the illuminated portion (between 0 and 1)


	responsecor (bool (default=True)) – Divide out the spatially-averaged spectrum response from the flat image.
Runs flat_response


	smooth (bool (default=False)) – Passed to flat_response.
Should the 1-D, mean-combined flat be smoothed before dividing out?


	npix (int (default=11)) – Passed to flat_response.
if smooth=True, how big of a boxcar smooth kernel should be used (in pixels)?


	EXPTIME (string (optional, default=’EXPTIME’)) – FITS header field containing the exposure time in seconds.


	DATASEC (string (optional, default=’DATASEC’)) – FITS header field containing the data section of the CCD, i.e. to
remove the bias section. Used if trim=True


	Saxis (int, optional) – Set which axis is the spatial dimension. For DIS, Saxis=0
(corresponds to NAXIS2 in header). For KOSMOS, Saxis=1.
(Default is 0)


	Waxis (int, optional) – Set which axis is the wavelength dimension. For DIS, Waxis=1
(corresponds to NAXIS1 in the header). For KOSMOS, Waxis=0.
(Default is 1)
NOTE: if Saxis is changed, Waxis will be updated, and visa versa.






	Returns

	
	flat (CCDData object) – Always returned, the final flat image object


	ilum (array) – Returned if illumcor=True, the 1-D array to use for trimming
science images to the illuminated portion of the CCD.
















kosmos.fluxcal module


	
kosmos.fluxcal.airmass_cor(object_spectrum, airmass, Xfile)

	Correct the spectrum based on the airmass. Requires observatory extinction file


	Parameters

	
	object_spectrum (Spectrum1D object)


	airmass (float) – The value of the airmass. Note: NOT the header keyword.


	Xfile (astropy table) – The extinction table from obs_extinction, with columns (‘wave’, ‘X’)
that have standard units of: (angstroms, mag/airmass)






	Return type

	The airmass-corrected Spectrum1D object










	
kosmos.fluxcal.apply_sensfunc(object_spectrum, sensfunc_spec)

	Apply the derived sensitivity function, converts observed units (e.g. ADU/s)
to physical units (e.g. erg/s/cm2/A).

Sensitivity function is first linearly interpolated onto the wavelength scale
of the observed data, and then directly multiplied.


	Parameters

	
	object_spectrum (Spectrum1D object) – the observed object spectrum to apply the sensfunc to


	sensfunc_spec (Spectrum1D object) – the output of standard_sensfunc






	Return type

	The sensfunc-corrected spectrum, a Spectrum1D object










	
kosmos.fluxcal.mag2flux(spec_in, zeropt=48.6)

	Convert magnitudes to flux units. This is important for dealing with standards
and files from IRAF, which are stored in AB mag units. To be clear, this converts
to “PHOTFLAM” units in IRAF-speak. Assumes the common flux zeropoint used in IRAF


	Parameters

	
	spec_in (a Spectrum1D object) – An input spectrum with wavelength of the data points in Angstroms
as the spectral_axis and magnitudes of the data as the flux.


	zeropt (float, optional) – Conversion factor for mag->flux. (Default is 48.60 from AB system)






	Return type

	Spectrum1D object with flux now in flux units (erg/s/cm2/A)










	
kosmos.fluxcal.obs_extinction(obs_file)

	Load the observatory-specific airmass extinction file from the supplied library
in the directory kosmos/resources/extinction


	Parameters

	obs_file (str, {‘apoextinct.dat’, ‘ctioextinct.dat’, ‘kpnoextinct.dat’, ‘ormextinct.dat’}) – The observatory-specific airmass extinction file. If not known for your
observatory, use one of the provided files (e.g. kpnoextinct.dat).

Following IRAF standard, extinction files have 2-column format:
wavelength (Angstroms), Extinction (Mag per Airmass)



	Returns

	
	Astropy Table with the observatory extinction data, columns have names


	(wave, X) and units of (Angstroms, Airmass)















	
kosmos.fluxcal.onedstd(stdstar)

	Load the one-dimensional standard star from the supplied library
“onedstd”, originally from IRAF. The provenance of these reference
spectra are varied, and future work includes creating a uniform set.


	Parameters

	stdstar (str) – Name of the standard star file in the kosmos/resources/onedstds
directory to be used for the flux calibration. The user must
provide the subdirectory and file name. For example:

>>> standard_sensfunc(obj_spec, standard, stdstar='spec50cal/bd284211.dat', mode='spline')          





If no standard is supplied, or an improper path is given,
will raise a ValueError.



	Return type

	astropy Table with onedstd data










	
kosmos.fluxcal.standard_sensfunc(object_spectrum, standard, mode='spline', polydeg=9, badlines=None, display=False, ax=None)

	Compute the standard star sensitivity function. First down-samples the
observed standard star spectrum to the reference spectrum, then computes
log_10(Reference Flux / Observed Flux). This log sensfunc is then
interpolated using the specified mode back to the entire observed
wavelength range, and the normal (i.e. not log10) sensfunc is returned.


	Parameters

	
	object_spectrum (Spectrum1D object) – The observed standard star spectrum


	standard (astropy table) – output from onedstd, has columns (‘wave’, ‘width’, ‘mag’, ‘flux’)


	mode (str, optional {‘linear’, ‘spline’, ‘poly’, ‘interp’}) – (Default is spline)


	polydeg (float, optional) – if mode=’poly’, this is the order of the polynomial to fit through
(Default is 9)


	display (bool, optional) – If True, plot the sensfunc (Default is False)


	badlines (array-like, optional) – A list of values (lines) to mask out of when generating sensfunc


	ax (matplotlib axes or subplot object, optional) – axes or subplot to be plotted onto. If not specified one will be
created. (Default is None)






	Returns

	sensfunc_spec – The sensitivity function in the covered wavelength range
for the given standard star, stored as a Spectrum1D



	Return type

	Spectrum1D object











kosmos.identify module

Functions that work to identify spectral features, and fit them for
wavelength calibration.

The work flow is: identify functions are used to either manually or
automatically find features (e.g. arclines at known wavelengths), and then
fit_wavelength simply interpolates.

IMPROVEMENT NEEDED: some form of reidentify, which takes a very close
solution and does simple (affine?) scaling.


	
kosmos.identify.air_to_vac(spec)

	Simple wrapper for the air_to_vac calculation within specutils.utils.wcs_utils


	Parameters

	spec (Spectrum1D object)



	Return type

	Spectrum1D object with spectral_axis converted from air to vaccum units










	
kosmos.identify.find_peaks(wave, flux, pwidth=10, pthreshold=0.97, minsep=1)

	Given a slice thru an arclamp image, find the significant peaks.
Originally from PyDIS


	Parameters

	
	wave (~numpy.ndarray) – Wavelength (could be approximate)


	flux (~numpy.ndarray) – Flux


	pwidth (float (default=10)) – the number of pixels around the “peak” to fit over


	pthreshold (float (default = 0.97)) – Peak threshold, between 0 and 1


	minsep (float (default=1)) – Minimum separation






	Return type

	Peak Pixels, Peak Wavelengths










	
kosmos.identify.fit_wavelength(spec, xpoints, wpoints, display=False, mode='poly', deg=7, GPRscale=101, returnpoints=False, returnvar=False)

	Fit the wavelength solution from a series of (pixel, Wavelength)
datapoints, and apply it a spectrum


	Parameters

	
	spec (Spectrum1D) – the object spectrum to have a new wavelength axis added


	xpoints (array-like object) – the pixel values of identified arcline features


	wpoints (astropy Quantity) – the corresponding wavelengths for the identiifed pixels.
NOTE: Must have sensible units like angstroms, which will be
applied to the resulting spectrum.


	display (bool, optional (default is False)) – should we plot the (pixel,wavelength) fit residuals?


	mode (str, [‘poly’, ‘spline’, ‘interp’, ‘gp’]) – which fitting mode should be used? (Default is ‘poly’)
Select between Polynomial, UnivariateSpline, Interpolation, and
a Gaussian Process (via george, using ExpSquaredKernel)


	deg (int, optional (default is 7)) – if mode=’poly’, set the polynomial degree to use
if mode=’interp’, set the interpolation degree (passed as
kind=deg to interp1d()).


	GPRscale (int, optional (default is 101)) – If mode=’gp’, the Rscale parameter to use with ExpSquaredKernel


	returnpoints (bool, optional (default is False)) – If set, return just the fit values corresponding to the input
(xpoints, wpoints)


	returnvar (bool, optional (default is False)) – If set and mode=’gp’, additionally return the variance on the
resulting wavelength axis






	Returns

	
	outspec (Sepctrum1D object) – the same input spectrum, but with the newly fit wavelength
axis added.


	if returnvar=True, then return – outspec, wavelength_variance















	
kosmos.identify.identify_dtw(arc, ref, display=False, upsample=False, Ufactor=5, step_pattern='symmetric1', open_begin=False, open_end=False, peak_spline=True, pthreshold=0.95)

	Align an arc lamp spectrum in pixel-units to a reference spectrum
in wavelength units using Dynamic Time Warping (DTW).

Notes: very simple, fairly robust, but has several key limitations:
- resulting wavelength axis may not be smooth (mapping to reference)
- DTW fixes the first/last pixel to the start/stop of reference spectrum.

If reference is much wider than observed lamp, this is a big problem.
Suggest using identify_dtw for 1st-pass, but examine (pixel, wavelength)
plot to see if it diverges strongly!

This function should probably be wrapped with something instrument-
specific, to handle known limitations and input a sensible reference.


	Parameters

	
	arc (Spectrum1D object) – the observed Arc-lamp spectrum to align, as returned by e.g. BoxcarExtract
spectral axis typically has units of pixels.


	ref (Spectrum1D object) – reference spectrum to match to


	upsample (bool (default=True)) – do the DTW on an up-sampled version of the observed arc and reference
spectra using a gaussian smooth. Linearlly down-sample result.
WARNING: doesn’t like backwards wavelength axis for either arc or ref…


	Ufactor (int (default=5)) – the factor to up-sample both the ref and arc spectra by.
UPGRADE IDEA: up-sample the arc and ref by different factors?


	peak_spline (bool (default=True)) – After DTW match has been run on the whole spectrum, select pixels
with peaks in arc spectrum and fit a spline. Final wavelength
solution returned comes from spline fit. This is often useful since
only the peaks carry “information” in the DTW match, and the
wavelength solution can be very non-smooth between peaks. This
mode essentially uses DTW to do peak-wavelength identification.
If you don’t like the spline default, set to False and do your
own interpolation of the line wavelengths.
NEED TO UPDATE DESCRIPTION HERE… RETURNS ONLY PEAKS, LIKE OTHER IDENTIFY MODES!


	pthreshold (float (default=0.95)) – Number between 0 and 1, the threshold to use in defining
“peaks” in the spectrum if peak_spline=True.


	display (bool (optional, default=False)) – if set, produce a plot of pixel vs wavelength solution






	Returns

	
	The pixel locations and wavelengths of the identified features


	(lines or the whole spectrum) – pixel, wavelength















	
kosmos.identify.identify_nearest(arcspec, wapprox=None, linelist=None, linewave=None, autotol=25, silent=False)

	Identify arc lines using a simple greedy “nearest neighbor” approach.
Requires an approximate wavelength solution (e.g. as provided by
image header keywords). Peaks are first detected in the 1d spectrum.
Starting from the center of the spectrum, the closest lines within a
tolerance are picked. A linear interpolation solution is iteratively
fit with each successive line added.


	Parameters

	
	arcspec (Spectrum1D) – the 1d spectrum of the arc lamp to be fit.


	wapprox (astropy Quantity, or None) – the approximate wavelenth solution, as e.g. provided by the
image header. Must have sensible units, like Angstroms.
NOTE: If set to None, assumes the arcspec object has the
approximate wavelength axis.


	linelist (str, optional) – name of linelist to load, is passed to loadlinelist()


	linewave (numpy array or None, optional) – Optionally pass an array of arclines to fit, as returned by e.g.
loadlinelist()


	autotol (int, optional (default is 25)) – the tolerance in pixel units to allow nearest matches within.


	silent (bool, optional (default is False)) – suppress a few helpful summary messages






	Returns

	xpoints, wpoints – successfully identified lines.



	Return type

	the pixel and wavelength values of the










	
kosmos.identify.identify_widget(arcspec, silent=False)

	Interactive version of the Identify GUI, specifically using ipython widgets.

Each line is roughly identified by the user, then a Gaussian is fit to
determine the precise line center. The reference value for the line is then
entered by the user.

When finished, the output lines should usually be passed in a new Jupter
notebook cell to identify for determining the wavelength solution:
>>>> xpl,wav = identify_widget(arcspec) # doctest: +SKIP
>>>> fit_spec = fit_wavelength(obj_spec, xpl, wav) # doctest: +SKIP

NOTE: Because of the widgets used, this is not well suited for inclusion in
pipelines, and instead is ideal for interactive analysis.


	Parameters

	
	arcspec (Spectrum1D) – the 1d spectrum of the arc lamp to be fit.


	silent (bool, optional (default is False)) – Set to True to silence the instruction print out each time.






	Returns

	
	The pixel locations and wavelengths of the identified lines


	pixel, wavelength















	
kosmos.identify.loadlinelist(file)

	Load a list of arclamp lines from the supplied library of files in the
directory: kosmos/resources/linelists.

Note: this directory was mostly taken from IRAF.
https://github.com/joequant/iraf/tree/master/noao/lib/linelists


	Parameters

	file (str) – name of linelist to load



	Return type

	numpy array of arclines











kosmos.imtools module

This file contains tools to help with image manipulation, such as wrappers around
astropy tools for bias combining.


	
kosmos.imtools.biascombine(bfiles)

	A simple wrapper to go through bias frames, read them in, and combine them.

Currently median combine is hard-coded, but ccdproc.Combiner does have functions
for other methods. See:
https://ccdproc.readthedocs.io/en/latest/api/ccdproc.Combiner.html


	Parameters

	bfiles (list of paths to bias frame .fits files)



	Returns

	bias



	Return type

	CCDData object










	
kosmos.imtools.proc(file, bias=None, flat=None, dark=None, trim=True, ilum=None, Saxis=0, Waxis=1, EXPTIME='EXPTIME', DATASEC='DATASEC', CR=False, GAIN='GAIN', READNOISE='RDNOISE', CRsigclip=4.5)

	Semi-generalized function to read a FITS file in, divide by exposure
time (returns units of ADU/s), and optionally perform basic CCD
processing to it (bias, dark, flat corrections, biassec and
illumination region trimming).


	Parameters

	
	file (string) – path to FITS file


	bias (CCDData object, optional (default=None)) – median bias frame generated using e.g. biascombine to subtract
from each flat image


	dark (CCDData object, optional) – dark frame to subtract


	flat (CCDData object, optional) – combined flat frame to divide


	trim (bool (default=True)) – Trim the “bias section” out of each flat frame. Uses fits header
field defined by DATASEC keyword


	ilum (array, optional) – if provided, trim image to the illuminated portion of the CCD.


	EXPTIME (string (optional, default=’EXPTIME’)) – FITS header field containing the exposure time in seconds.


	DATASEC (string (optional, default=’DATASEC’)) – FITS header field containing the data section of the CCD, i.e. to
remove the bias section. Used if trim=True


	Saxis (int, optional) – Set which axis is the spatial dimension. For DIS, Saxis=0
(corresponds to NAXIS2 in header). For KOSMOS, Saxis=1.
(Default is 0)


	Waxis (int, optional) – Set which axis is the wavelength dimension. For DIS, Waxis=1
(corresponds to NAXIS1 in the header). For KOSMOS, Waxis=0.
(Default is 1)
NOTE: if Saxis is changed, Waxis will be updated, and visa versa.


	CR (bool (default=False)) – If True, use the L.A. Cosmic routine to remove cosmic rays from
image before reducing.


	GAIN (string (optional, default=’GAIN’)) – FITS header field containing the Gain parameter, used by
L.A. Cosmic


	READNOISE (string (optional, default=’RDNOISE’)) – FITS header field containing the Read Noise parameter, used by
L.A. Cosmic


	CRsigclip (int (optional, default=4.5)) – sigma-clipping parameter passed to L.A. Cosmic


	gain_apply (bool (optional, default=False)) – apply gain to image. If this is set to true and the bias or flat are not
in units of electrons per adu this may result in an error






	Returns

	img



	Return type

	CCDData object











kosmos.version module



kosmos.wrappers module

Scripts that wrap around the spectral reduction functions. In the future,
could include instrument or setup sepcific reduction workflows here.


	
kosmos.wrappers.script_reduce(script, trim=True, apwidth=10, skysep=5, skywidth=5, trace_nbins=15, trace_guess=None, trace_window=None, stdtrace=False, obs_file='apoextinct.dat', linelist='apohenear.dat', waveapprox=False, Saxis=0, Waxis=1, display=True, display_all=False, write_reduced=True, debug=False, silencewarnings=False)

	Wrapper function that carries out all aspects of simple spectral
reduction, according to a script. Here the script file is analogous to
a simple observing log, a CSV that has two columns:


file path, type





	where type must be from the list of available filetypes:
	(bias, flat, arc, std, object)





The script is processed top-to-bottom. Sequential files of the same
type are processed together (e.g. biases are combined), and applied
on all subsequent files. Wavelength solutions or sensitivity functions
are defined and used on all subsequent files. If Arc lamps are taken
after each observation, putting the arc file before the observation
file ensures a new wavelength solution is applied.


	Standards must have the onedstd reference included as:
	std:LIBRARY/FILE.dat





(see example script below)

This framework allows script_reduce to automatically process most
sets of simple long-slit observations – even from multiple nights –
with well-defined results, but does not allow for fully customized
adjustments that may be needed for precision work.


	EXAMPLE SCRIPT FILE
	file1.fits, bias
file2.fits, bias
file3.fits, flat
file4.fits, flat
file8.fits, arc
file6.fits, std:spec50cal/bd284211.dat
file7.fits, object






	Parameters

	
	script (str) – The .csv file to process (required)


	trim (bool, optional (default is True))


	apwidth (int, optional (default is 10)) – The width along the spatial axis on either side of the trace to
extract. (passed to apextract)


	skysep (int, optional (default is 5)) – The separation in pixels from the aperture to the sky window.
(passed to apextract)


	skywidth (int, optional (default is 5)) – The width in pixels of the sky windows on either side of the
aperture. (passed to apextract)


	trace_nbins (int, optional (default is 15)) – number of bins in wavelength direction to chop image into.
(passed to trace as nbins)


	trace_guess (int or None, optional (default is None)) – A guess at where the desired trace is in the spatial direction. If set,
overrides the normal max peak finder. Good for tracing a fainter source if
multiple traces are present. (passed to trace as guess)


	trace_window (int or None, optional (default is None)) – If set, only fit the trace within a given region around the guess position.
Useful for tracing faint sources if multiple traces are present, but
potentially bad if the trace is substantially bent or warped.
(passed to trace as window)


	stdtrace (bool, optional (default is False)) – if True, use first object or standard to establish the trace, and use
for extracting every spectrum thereafter.


	obs_file (str, optional (default is ‘apoextinct.dat’)) –


	Observatory-specific airmass extinction file
	passed to obs_extinction







	linelist (str, optional (default is ‘apohenear.dat’)) – Passed to loadlinelist to load arclines, which are used
by identify_nearest.


	waveapprox (bool, optional (default is False)) – if set, use the approximate wavelength from the header
‘DISPDW’ and ‘DISPWC’ keywords. Usually not great.
(probably needs to be genearlized better)


	Saxis (int, optional (default is 0)) – Set which axis is the spatial dimension. For DIS, Saxis=0
(corresponds to NAXIS2 in header). For KOSMOS, Saxis=1.


	Waxis (int, optional (default is 1)) – Set which axis is the wavelength dimension. For DIS, Waxis=1
(corresponds to NAXIS1 in the header). For KOSMOS, Waxis=0.
NOTE: if Saxis is changed, Waxis will be updated, and visa versa.


	display (bool, optional (default is True)) – if set, plot reduced object and standard spectra to the screen


	display_all (bool, optional (default is False)) – if set, passes display=True to all other functions


	write_reduced (bool, optional (default is True)) – if set, write reduced object and standard spectra to a
.fits file, and make a log file for this run.


	silencewarnings (bool, optional (default is False)) – aggresively silence warnings that get spit out, mainly
from WCS. (caution: you might miss an important failure)






	Returns

	(e.g. bias.fits, flat.fits), and fully reduced versions of objects



	Return type

	Output files are created for combined calibration frames











Module contents





            

          

      

      

    

  

    
      
          
            
  
kosmos



	kosmos package
	Submodules

	kosmos.apextract module

	kosmos.flatfield module

	kosmos.fluxcal module

	kosmos.identify module

	kosmos.imtools module

	kosmos.version module

	kosmos.wrappers module

	Module contents












            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          KOSMOS
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





